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Abstract. Lβ2 X-ray satellite spectra of tungsten and gold are calculated using the Multi-Configuration
Dirac-Fock energies and compared with recent experimental data. New calculations of L1-L3M5 Coster-
Kronig transition energies for tungsten are presented, confirming the origin of the Lβ2 visible satellites
reported by two experimental groups. We found the value 5.09 eV for the average energy of the L1-L3M5

Coster-Kronig transition in tungsten. The Lβ2 satellite spectrum of tungsten was calculated in the frame-
work of a statistical model, which makes use of Racah’s algebra. A detailed calculation of the Lβ2 and
Lβ15 satellite spectra was performed for gold.

PACS. 32.30.Rj X-ray spectra – 32.70.Fw Absolute and relative intensities – 32.80.Hd Auger effect and
inner-shell excitation or ionization

1 Introduction

X-ray lines from almost neutral atoms are seldom pure,
being in most cases contaminated by the so-called satellite
lines, that is, X-ray lines that result from transitions in
multi-inner hole atomic configurations. In heavy atoms,
X-ray lines resulting from L → M, N hole transitions with
a M spectator hole lead, in general, to satellites that can be
resolved from the diagram line (visible satellites), whereas
the ones with N-, O- or P-shell spectator holes usually
appear embedded within the natural width of the parent
line (hidden satellites).

The study of X-ray satellite lines in systems where
only one spectator inner hole exists is more than seventy
years old, yet not very many works on this subject have
been published. Ritchmeyer and Ramberg [1] compared
their computed satellite structure of Lα1,2 (L3 → M4,5

hole transitions), Lβ2 (L3 → N5) and Lβ15 (L3 → N4)
spectra for gold with experimental data. Lα X-ray satel-
lite spectra of elements between Zr and Cd were studied
by Juslén et al. [2]. Doyle and Shafroth [3] measured the
intensities of Lα and Lβ1 (L2 → M4) satellites of elements
in the 37 ≤ Z ≤ 56 region. Hague et al. [4] reported on
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silver Lα satellites. Extensive tables of relativistic ener-
gies of L X-ray satellite lines, using the Dirac-Fock-Slater
(DFS) approach including quantum electrodynamic cor-
rections, were published by Parente et al. [5]. The Lα1

satellite structures of iridium, gold and uranium were
studied theoretically by Parente et al. [6] and experimen-
tally by Carvalho et al. [7]. The possibility that L X-ray
satellite lines, not predicted by theory, could be present in
tungsten was raised by Salgueiro et al. [8], to explain their
experimental data. A simple model to study the relative
intensities of satellite and diagram X-ray lines following L-
shell ionization in the region around Z = 50 was proposed
by Xu and Rosato [9]. Most recently, Vlaicu et al. [10]
studied the L emission spectrum of tungsten, confirm-
ing the existence of the satellite lines found by Salgueiro
et al. [8], and later Oohashi et al. [11] focused on the origin
of the Lβ2 visible satellite lines in gold.

The existence of satellite lines in X-ray spectra has
been explained long ago by the creation of multiple va-
cancies in inner-shells, resulting from the ionization pro-
cess. Two mechanisms have been proposed for the cre-
ation of double vacancies after a primary ionization in the
L1 or L2 subshells, namely shake-off and Li-LjXk Coster-
Kronig transitions. Here i = 1, 2, j = 2, 3 (with i �= j),
and Xk may be any outer subshell. The shake process,
for energies not far above the threshold, depends on the
excitation energy [12], whereas Coster-Kronig transitions
are independent on the excitation energy. Furthermore,
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Coster-Kronig transitions are highly probable when en-
ergetically allowed so that, in this case, the atom, after
the primary ionization, will unavoidably end up with two
inner-shell vacancies.

Atomic K- and L-shells relativistic radiationless tran-
sition probabilities for 22 elements with atomic numbers
18 ≤ Z ≤ 96 were published in 1979 by Chen et al. [13].
Earlier, in 1977, the same authors had found L1-L3M4,5

Coster-Kronig transitions to be energetically forbidden in
the region 50 ≤ Z ≤ 79 [14]. However, in 1987, Salgueiro
et al. [8] obtained tungsten Lα X-ray spectra where satel-
lite lines were present, which could not be explained by
the shake mechanism. Therefore they suggested that, most
probably, Coster-Kronig L1-L3M5 transitions could take
place in tungsten, contrary to Chen et al. predictions. The
existence of these satellite lines was confirmed in 1998
by Vlaicu and co-workers [10]. We note, however, that
Agarwal [15] already referred the existence of L1-L3M5

Coster-Kronig transitions for Z > 73 in 1979.
In this work we used the multi-configuration

Dirac-Fock code of Desclaux and Indelicato [16–18] to cal-
culate the energies of L1- and L3M4,5-hole levels of tung-
sten, looking for the possibility of existence of L1-L3M4,5

Coster-Kronig transitions. Our results led to the conclu-
sion that L1-L3M5 transitions are indeed energetically al-
lowed in tungsten, contrary to Chen et al. [14] prediction.
Furthermore, we used the same code to compute transi-
tion energies of the X-ray lines in the Lβ2 satellite band
of tungsten. As the number of lines involved is too big to
handle, we used the method suggested by Parente et al. [5],
using Racah’s algebra, to predict the shape of this satellite
band.

The Lβ2 and Lβ15 satellite bands of gold, where the
number of transitions allows for a full calculation, were
also studied in this work and compared with recent experi-
mental results [11]. Spectator holes in all possible subshells
were considered in the study, including the ones that give
origin to hidden satellites. To assess the accuracy of the
method that makes use of Racah’s algebra, we also used
this method for gold, to allow for a comparison with the
results of the full calculation.

2 Calculation of atomic wave functions
and transition probabilities

Bound states wave functions are calculated using the
Dirac-Fock program of Desclaux and Indelicato. Details
on the Hamiltonian and the processes used to build the
wave-functions can be found elsewhere [16,17,19].

The total wave function is calculated with the help of
the variational principle. The total energy of the atomic
system is the eigenvalue of the equation

Hno pairΨΠ,J,M (. . . , ri, . . .) = EΠ,J,MΨΠ,J,M (. . . , ri, . . .),
(1)

where Π is the parity, J is the total angular momentum
eigenvalue, and M is the eigenvalue of its projection on

the z-axis Jz . Here,

Hno pair =
N∑

i=1

HD(ri) +
∑

i<j

Vij , (2)

where HD is the one electron Dirac operator and Vij is
an operator representing the electron-electron interaction
of order one in α. The expression of Vij in the Coulomb
gauge and in atomic units is

Vij =
1
rij

(3a)

− αi · αj

rij
(3b)

− αi · αj

rij

[
cos

(ωijrij
c

)
− 1

]

+ c2(αi · ∇i)(αj · ∇j)
cos

(ωijrij

c

) − 1
ω2

ijrij
, (3c)

where rij = |ri − rj | is the inter-electronic distance, ωij is
the energy of the exchanged photon between the two elec-
trons, αi are the Dirac matrices and c is the speed of light.
We use the Coulomb gauge as it has been demonstrated
that it provides energies free from spurious contributions
at the ladder approximation level and must be used in
many-body atomic structure calculations [20,21].

The term (3a) represents the Coulomb interaction, the
term (3b) is the Gaunt (magnetic) interaction, and the last
two terms (3c) stand for the retardation operator. In this
expression the ∇ operators act only on rij and not on the
following wave functions.

By a series expansion of the operators in expres-
sions (3b) and (3c) in powers of ωijrij/c� 1 one obtains
the Breit interaction, which includes the leading retarda-
tion contribution of order 1/c2. The Breit interaction is,
then, the sum of the Gaunt interaction (3b) and the Breit
retardation

BR
ij =

αi · αj

2rij
− (αi · rij) (αj · rij)

2r3ij
. (4)

In the many-body part of the calculation the electron-
electron interaction is described by the sum of the
Coulomb and the Breit interactions. Higher orders in 1/c,
deriving from the difference between equations (3c) and
(4) are treated here only as a first order perturbation. All
calculations are done for finite nuclei using a Fermi distri-
bution with a thickness parameter of 2.3 fm. The nuclear
radii are taken from reference [22].

The MCDF method is defined by the particular choice
of a trial function to solve equation (1) as a linear combi-
nation of configuration state functions (CSF):

|ΨΠ ,J,M 〉 =
n∑

ν=1

cν |ν,Π , J,M〉 . (5)

The CSF are also eigenfunctions of the parity Π , the total
angular momentum J2 and its projection Jz . The label ν



J.P. Marques et al.: Relativistic calculation of Lβ2 satellite spectra of W and Au 191

stands for all other numbers (principal quantum number,
...) necessary to define unambiguously the CSF. The cν
are called the mixing coefficients and are obtained by di-
agonalization of the Hamiltonian matrix coming from the
minimization of the energy in equation (5) with respect
to the cν . The CSF are antisymmetric products of one-
electron wave functions expressed as linear combination
of Slater determinants of Dirac 4-spinors

|ν,Π , J,M〉 =
Nν∑

i=1

di

∣∣∣∣∣∣∣

ψi
1 (r1) · · · ψi

m (r1)
...

. . .
...

ψi
1 (rm) · · · ψi

m (rm)

∣∣∣∣∣∣∣
. (6)

where the ψ-s are the one-electron wave functions and
the coefficients di are determined by requiring that the
CSF is an eigenstate of J2 and Jz. A variational prin-
ciple provides the integro-differential equations to deter-
mine the radial wave functions and a Hamiltonian matrix
that provides the mixing coefficients cν by diagonaliza-
tion. One-electron radiative corrections (self-energy and
vacuum polarization) are added afterwards. All the ener-
gies are calculated using the experimental nuclear charge
distribution for the nucleus.

The so-called Optimized Levels (OL) method was used
to determine the wave function and energy for each state
involved. Thus, spin-orbitals in the initial and final states
are not orthogonal, since they have been optimized sepa-
rately. The formalism to take in account the wave func-
tions non-orthogonality in the transition probabilities cal-
culation has been described by Löwdin [23]. The matrix
element of a one-electron operator O between two deter-
minants belonging to the initial and final states can be
written

〈νΠ JM |
N∑

i=1

O (ri) |ν′Π ′J ′M ′〉 =

1
N !

∣∣∣∣∣∣∣

ψ1 (r1) · · · ψm (r1)
...

. . .
...

ψ1 (rm) · · · ψm (rm)

∣∣∣∣∣∣∣

×
m∑

i=1

O (ri)

∣∣∣∣∣∣∣

φ1 (r1) · · · φm (r1)
...

. . .
...

φ1 (rm) · · · φm (rm)

∣∣∣∣∣∣∣
, (7)

where the ψi belong to the initial state and the φi and
primes belong to the final state. If ψ = |nκµ〉 and φ =
|n′κ′µ′〉 are orthogonal, i.e., 〈nκµ|n′κ′µ′〉 = δn,n′δκ,κ′δµ,µ′ ,
the matrix element (7) reduces to one term 〈ψi|O |φi〉
where i represents the only electron that does not have
the same spin-orbital in the initial and final determinants.
Since O is a one-electron operator, only one spin-orbital
can change, otherwise the matrix element is zero. In con-
trast, when the orthogonality between initial and final

states is not enforced, one gets [23]

〈νΠ JM |
N∑

i=1

O (ri) |ν′Π ′J ′M ′〉 =
∑

i,j′
〈ψi|O |φj′ 〉Dij′ ,

(8)

where Dij′ is the minor determinant obtained by crossing
out the ith row and j′th column from the determinant of
dimension N ×N , made of all possible overlaps 〈ψk|φl′〉.

Radiative corrections are also introduced, from a full
QED treatment. The one-electron self-energy is evalu-
ated using the one-electron values of Mohr and cowork-
ers [24–26] and corrected for finite nuclear size [27]. The
self-energy screening and vacuum polarization are treated
with an approximate method developed by Indelicato and
coworkers [28–31].

3 Results

3.1 Tungsten

Using the MCDF code of Desclaux and Indelicato [16,17],
we calculated the energies of all levels in the L1- and L3M5-
hole configurations of tungsten, to check for the possibility
of Coster-Kronig transitions between these two configura-
tions. Interaction of the inner holes with electrons in outer
unfilled shells was taken in account and full relaxation was
included but no electronic correlation.

There are 63 energy levels in the L1 configuration. We
found 359 energy levels in the L3M5 configuration with
energies below the lowest energy level of the L1 configu-
ration. Thus, we arrive to the conclusion that L1-L3M5

Coster-Kronig transitions are indeed possible in tungsten,
originating the double L3M5 vacancy state which after-
wards yield the satellite lines first detected by Salgueiro
et al. [8] and confirmed by Vlaicu et al. [10]. Averaging
over initial and final state energies, we found for the radi-
ationless transition the energy of 5.09 eV.

This value is to be compared to −2.70 eV found by
Chen et al. [14], using a relativistic DFS approach. In
the latter work coupling with unfilled outer shells was
neglected. These authors present the Coster-Kronig tran-
sition energies as differences of initial and final average
total system energies, which does not allow for a detailed
comparison between individual level energies.

Using the MCDF computer code, we calculated the en-
ergies of all possible L3 → N5 radiative transitions in the
presence of a M5 spectator hole and four 5d electrons in
the outer unfilled shell, L3M5-M5N5 transitions, that yield
the Lβ2 satellite band. In general, to each pair of initial
and final angular momenta correspond several X-ray tran-
sitions. A full calculation of transition probabilities would
be, in this case, a formidable task, due to the enormous
number, more than one hundred thousand, of authorized
transitions. Instead, we used Racah’s algebra to compute
the relative line intensities, using the method of Parente
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et al. [5]. This method assumes:

1. the initial multiplet states are populated statistically;
2. the effect of the multiplet energy differences on the

X-ray matrix elements can be neglected;
3. the Auger decay rates of the various multiplet states of

a configuration can be taken to be identical. In fact, for
heavy atoms there are so many open Auger channels
that the multiplet effect on Auger emission rates for
double-hole states becomes minimal.

The angular momenta resulting from the unfilled shells
are j1, j2, j3 and j′1, j

′
2, j

′
3 for the initial and final config-

urations, respectively, where j3 and j′3 refer to the outer
unfilled shell electrons.

Under the above assumptions, the intensity for the line

|j1j2(J12), j3; J〉 → |j′1j′2(J ′
12), j

′
3; J

′〉

is found to be proportional to
∣∣∣∣∣∣

∑

J′
13

(2J ′
13 + 1)

√
(2J ′

12 + 1) (2J12 + 1) (2J ′ + 1) (2J + 1)

×
√

(2j1 + 1) (2j′2 + 1)

× (−1)J
′
12+j′3+3J′

13+j′2+3j1+j2+j3+J′+1

×
{
J ′

12 j
′
3 J

′
J ′

13 j
′
2 j

′
1

}{
j1 j2 J12

j3 J J ′
13

}{
j′2 J

′ J ′
13

J j1 1

}∣∣∣∣
2

, (9)

where Jik results from the coupling between angular mo-
menta ji and jk. In what concerns the L3M5-M5N5 tran-
sitions, we have j1 = 3/2; j2 = j′2 = 5/2; j′1 = 5/2. For
tungsten the coupling of the four 5d electron angular mo-
menta yields j3 = 0, . . . , 6; j′3 = 0, . . . , 6; J = 0, . . . , 10;
J ′ = 0, . . . , 11. For each pair of J, J ′ values, the remain-
ing angular momenta values can be found using standard
angular momenta calculations.

Only one energy value for each total angular momen-
tum J is considered. This method will then reproduce
the sum of the contributions of the several components of
the J → J ′ transition, within the approximations stated
above. Thus, we assumed only one line for each pair of
initial and final angular momenta values, assigning to this
line the weighted energy and the sum of the line compo-
nent intensities, in arbitrary units. As L3M5-M5N4 tran-
sition lines are much less intense that L3M5-M5N5 lines,
we did not include them in the calculation for tungsten.

We assume that the natural width of the L3M5-M5N5

satellite line is given by [14]

Γ (L3M5-M5N5) = Γ tot
L3

+ 2Γ tot
M5

+ Γ tot
N5
, (10)

where Γ tot
X is the natural width ofX level. Using the values

proposed by Campbell and Papp [32] we obtained 12.2 eV
for the width of each of those satellite lines. In this way
we arrived at the tungsten Lβ2 satellite band presented in
Figure 1, together with the corresponding spectrum gen-
erated using the DFS energy values of Parente et al. [5].

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

9980 9990 10000 10010 10020 10030 10040 10050 10060

Energy (eV)

In
te

ns
ity

 (a
rb

itr
. u

ni
ts

)

DFS
MCDF

Fig. 1. Calculated Lβ2 satellite band of tungsten, using Dirac-
Fock-Slater - DFS [5], and Multi-Configuration Dirac-Fock -
MCDF (this work) energy values, respectively. In both cases,
relative intensities were calculated in the present work using
Racah’s algebra, as described in the text. The bands are nor-
malized in intensity.

Due to the fact that only the lowest levels of the initial
L3M5 hole configuration are fed by Coster-Kronig transi-
tions from the L1 hole initial configuration, the theoret-
ical X-ray satellite band generated in this work is much
narrower than if all initial levels were fed. This is clearly
shown in Figure 1, as the satellite band computed using
DFS energy values included all energy levels of the L3M5

configuration as initial levels.
This prediction can be compared with the experimen-

tal data of Vlaicu et al. (Fig. 2 of [10]). Although the
data resolution is very poor, for obvious lack of statistics,
the proeminent peak with energy around 10010 eV is well
reproduced in the theoretical band (Fig. 1 - MCDF). It
is obvious that experimental results with better statistics
are needed.

Vlaicu et al. [10] estimated relative intensities of the
L-satellite lines for tungsten, using the expressions pro-
posed by Xu and Rosato [9], following the model of Krause
et al. [33], with values obtained by other authors for the
pertinent quantities. As they used Chen et al. [14] re-
sults for the Coster-Kronig transition probabilities, they
assumed that the Coster-Kronig channel for creating M-
shell spectator holes is closed, contrary to the findings of
the present work.

3.2 Gold

3.2.1 Coster-Kronig transition energies

The Lβ2 and Lβ15 satellite bands of gold were studied
in this work. In this case, the existence of both L1-L3M4

and L1-L3M5 Coster-Kronig transitions were predicted by
Chen et al. [14] and confirmed by our own calculation.



J.P. Marques et al.: Relativistic calculation of Lβ2 satellite spectra of W and Au 193

Table 1. Energies in eV and transition probabilities (W ) in s−1 for gold Lβ2, Lβ15, and Lβ3 diagram lines.

L3 - N5 (Lβ2) L3 - N4 (Lβ15) L1 - M3 (Lβ3)
Energy W Energy W Energy W

11581.36 1.38×1014 11563.24 1.28×1013 11612.24 1.67×1014

11581.33 1.54×1013 11563.20 2.66×1012 11611.82 8.31×1013

11581.40 2.14×1014 11563.21 2.55×1012 11611.87 4.15×1014

11563.17 2.28×1013

We found for the L1-L3M4 Coster-Kronig transition in
gold the energy of 38.23 eV and for the L1-L3M5 transition
the energy of 132.15 eV. These values are close to the
37.65 eV and 130.39 eV values, respectively, obtained by
Chen et al. [13].

The theoretical Lβ2 satellite band of gold was obtained
by calculating the transition probabilities for all possible
dipolar electric transitions corresponding to the decay of
the L3M5 and L3M4 double-hole configurations, in the en-
ergy window between 11600–11700 eV, and, in a separate
way, using Racah’s algebra method, as was done for tung-
sten.

3.2.2 Full MCDF calculation of satellite band

In gold, 8 and 7 energy levels correspond to the L3M5-
and L3M4-hole configurations respectively. On the other
hand, 11 and 8 levels correspond to the M5N5 and M4N5

configurations. This leads to 78 possible electric-dipole al-
lowed lines between the levels of the L3M4,5 and M4,5N5

configurations that yield the Lβ2 visible satellite band.
The calculations of the energies and transition probabili-
ties for these lines were performed using the MCDF code
of Desclaux and Indelicato, in single-configuration mode,
which includes all relativistic CSF originated from a single
LS configuration.

The Lβ15 (L3M4,5-M4,5N4) visible satellite lines, al-
though much less intense than the previous ones, also ex-
ist in the same energy window. So, we included these lines
in our calculation.

Results for transition energies and probabilities of Lβ2,
Lβ15 and Lβ3 (L1 → M3) diagram lines are presented in
Table 1. Transition energies and probabilities for Lβ2 and
Lβ15 visible satellite lines are shown in Table 2.

Furthermore, satellite lines originating from double-
holes, in L3 and N, O, or P subshells, have energies that
are embedded in the natural widths of the diagram lines.
So, the corresponding transition energies and probabilities
have also been calculated.

In order to compare MCDF calculations of transition
energies and probabilities with experiment, we have to
know the X-ray production cross-sections for lines arising
from single- and double-hole states in gold. The pertinent
expressions can be found in Xu and Rosato [9], using the
model of Krause et al. [33].

We define the cross-section for creation of a single-hole
configuration in the Li subshell as

σ′
Li

= σLi
(1 −QLi

), (11)

whereas for the L3X (X = M, N, O, P) double-hole con-
figurations the corresponding expressions are

σ′
L3X = σL1(1 −QL1)f13P (L1-L3X)

+ σL2(1 −QL2)f23P (L2-L3X)
+ σ3QL3(X). (12)

In equations (11) and (12) σLi are the Li-subshell ioniza-
tion cross-sections, QLi

is the sum of the shake-off proba-
bilities from all possible orbitals when a hole is created in
the Li subshell, fij is the partial Coster-Kronig transition
probability from level Li to level Lj , P (Li-LjX) is the
relative probability of the radiationless transition Li-LjX
that results in the double vacancy state LjX , and QL3 (X)
is the probability of shake-off from the X orbital when a
hole is created in the L3 subshell. It is assumed that Li

vacancies always decay before the outer M holes.
Ionization cross-sections are taken from Pálinkas and

Schlenk [34], for 60 keV electron impact, and shake-off
probabilities are calculated in this work with MCDF wave-
functions (Tab. 3). The quantities P (Li-L3X) in equa-
tion (12) are taken from Chen et al. [13] corresponding
values for Hg, corrected for the difference in atomic num-
ber, and Coster-Kronig transition probabilities are from
Chen et al. [14]. Values of σ′

L3X calculated in this way are
presented in the last column of Table 3.

Relative L3X double-hole to L3 single-hole configura-
tion creation cross-sections are compared in Table 4 with
those presented in reference [11]. Minor differences are due
to shake-off values and to corrections for the atomic num-
ber, made in our calculations, in the P (Li-LjX) values.

The X-ray production cross-sections for the diagram
lines can be written as

σR(L3-Nk) = σ′
L3

Γ (L3-Nk)
Γ tot

L3

(13)

for the Lβ2 (k = 5) and Lβ15 (k = 4) lines, with σ′
L3

=
432.45 barn, and

σR(L1-M3) = σ′
L1

Γ (L1-M3)
Γ tot

L1

(14)

for the Lβ3 line, with σ′
L1

= 139.55 barn. In equations (13)
and (14) Γ (Li−X) is the radiative width of the Li−X line,
and Γ tot

Li
is the total width of the Li subshell.
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Table 2. Energies in eV and transition probabilities (W ) in s−1 for gold Lβ2 and Lβ15 visible satellite lines.

L3M5 - M5N5 L3M4 - M4N5 L3M5 - M5N4 L3M4 - M4N4

Energy W Energy W Energy W Energy W

11627.05 3.38 × 1006 11645.44 5.88 × 1011 11614.35 4.44 × 1012 11616.27 4.51 × 1007

11630.44 3.69 × 1011 11645.50 1.12 × 1012 11614.37 9.63 × 1010 11625.33 4.12 × 1012

11630.50 1.25 × 1013 11645.52 9.47 × 1010 11614.41 1.13 × 1011 11625.34 2.94 × 1011

11631.65 1.28 × 1013 11646.48 3.27 × 1008 11614.43 3.57 × 1012 11625.35 3.04 × 1011

11631.71 2.85 × 1011 11647.89 9.95 × 1011 11615.88 6.82 × 1008 11625.35 2.70 × 1012

11635.82 1.91 × 1013 11647.91 9.18 × 1012 11617.83 2.24 × 1012 11625.97 1.95 × 1012

11635.84 1.34 × 1012 11647.94 1.45 × 1013 11617.89 1.73 × 1012 11625.98 9.88 × 1011

11635.90 1.37 × 1012 11647.96 8.51 × 1011 11617.89 6.45 × 1010 11629.82 1.39 × 1008

11635.93 1.22 × 1013 11650.18 2.27 × 1012 11621.86 1.38 × 1012 11633.24 2.47 × 1012

11638.60 1.16 × 1012 11650.20 3.49 × 1013 11621.90 2.44 × 1012 11633.25 1.27 × 1011

11638.66 5.08 × 1013 11650.24 4.96 × 1013 11621.92 2.86 × 1011 11633.26 1.75 × 1012

11638.70 6.23 × 1013 11653.43 1.53 × 1008 11623.20 1.65 × 1008 11634.52 2.70 × 1012

11639.27 5.04 × 1005 11654.39 2.35 × 1012 11624.62 2.74 × 1010 11634.54 3.13 × 1011

11640.46 1.06 × 1012 11654.41 6.01 × 1013 11624.65 1.72 × 1011 11634.55 1.51 × 1012

11640.46 1.38 × 1012 11654.45 7.81 × 1013 11624.65 2.57 × 1011 11634.63 2.90 × 1012

11640.52 4.36 × 1010 11655.15 2.25 × 1012 11624.68 1.35 × 1010 11634.69 1.43 × 1011

11646.62 3.07 × 1012 11655.15 4.37 × 1012 11626.66 1.25 × 1011 11634.71 2.00 × 1012

11646.69 5.16 × 1012 11655.22 1.14 × 1013 11626.66 2.75 × 1012 11635.05 1.83 × 1012

11646.69 2.86 × 1012 11655.23 2.12 × 1012 11626.68 1.91 × 1012 11635.06 1.95 × 1011

11646.71 5.90 × 1011 11655.82 4.42 × 1011 11633.46 5.46 × 1008 11635.06 1.00 × 1012

11647.32 3.55 × 1012 11655.85 6.54 × 1011 11634.69 5.01 × 1012 11638.91 6.71 × 1006

11647.38 1.72 × 1011 11655.87 1.36 × 1010 11634.70 1.46 × 1011 11642.44 1.14 × 1007

11647.46 2.46 × 1012 11657.61 3.27 × 1012 11634.76 3.81 × 1012 11642.54 6.92 × 1012

11649.22 1.05 × 1012 11657.62 1.74 × 1013 11636.15 3.11 × 1012 11642.55 3.05 × 1011

11649.25 1.49 × 1013 11657.67 3.08 × 1013 11636.18 2.22 × 1012 11642.60 2.61 × 1011

11649.29 2.13 × 1013 11658.09 4.67 × 1011 11636.21 1.80 × 1011 11642.62 5.18 × 1012

11650.77 1.21 × 1012 11658.11 9.65 × 1012 11638.16 1.01 × 1011 11644.24 9.65 × 1011

11650.83 3.16 × 1013 11658.15 1.30 × 1013 11638.17 2.10 × 1012 11644.25 2.05 × 1011

11651.99 3.29 × 1013 11658.17 5.34 × 1011 11638.22 1.57 × 1012 11644.26 2.09 × 1011

11658.25 1.85 × 1007 11659.00 8.31 × 1012 11638.22 9.85 × 1010 11644.26 4.15 × 1011

11658.93 7.78 × 1007 11659.07 1.63 × 1013 11646.35 9.90 × 1010 11644.42 5.92 × 1006

11660.33 1.06 × 1013 11659.91 6.87 × 1009 11646.36 2.29 × 1011 11648.09 1.00 × 1012

11660.42 1.19 × 1012 11661.46 1.57 × 1009 11646.41 5.56 × 1011 11648.11 4.67 × 1011

11660.43 5.88 × 1012 11646.42 1.18 × 1011

11660.73 6.33 × 1011 11649.14 1.94 × 1011

11660.78 1.27 × 1013 11649.15 9.40 × 1011

11660.80 1.71 × 1013 11649.17 1.75 × 1012

11660.85 6.47 × 1011 11651.17 3.52 × 1008

11671.11 2.33 × 1012

11671.12 4.69 × 1012

11671.18 2.39 × 1012

11671.19 4.81 × 1012

11671.20 1.20 × 1013

11671.21 2.41 × 1012

11673.74 4.37 × 1007

Assuming that satellite lines are caused by a single
Coster-Kronig transition and/or by shake-off processes,
the X-ray production cross-section for each line can be
expressed as

σR (L3X-XNk) = σ′
L3X

Γ (L3X-XNk)
Γ tot

L3X

, (15)

where Γ (L3X-XN5) is the radiative width of the
L3X-XN5 transition, and Γ tot

L3X is the total width of the
state with holes in the L3 and X subshells.

Widths for L1 to N7 levels were taken from Campbell
and Papp [32]. For the remaining one-hole levels, to our
knowledge, no data are available in the literature. We used
the following values ΓO1 = 5.0 eV, ΓO2 = 3.8 eV, ΓO3 =
3.0 eV, ΓO4 = 2.4 eV, ΓO5 = 2.3 eV, and ΓP1 = 5.0 eV.
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Table 3. Shake-off probabilities from the X orbital when a hole is created in the Li subshell (this work) and cross-sections for
creation of double L3X hole configurations in barn, for gold.

X QL1(X) QL2(X) QL3(X) σ′
L3X

K 2.82 × 10−8 1.65 × 10−7 3.73 × 10−8

L1 1.11 × 10−5 1.51 × 10−5 1.02 × 10−5

L2 1.25 × 10−5 2.69 × 10−5 1.38 × 10−5

L3 3.05 × 10−5 5.49 × 10−5 3.77 × 10−5

M1 8.95 × 10−5 1.36 × 10−4 1.20 × 10−4

M2 1.63 × 10−4 1.53 × 10−4 1.80 × 10−4

M3 3.60 × 10−4 4.56 × 10−4 3.51 × 10−4

M4 5.26 × 10−4 4.95 × 10−4 5.89 × 10−4 24.1
M5 7.74 × 10−4 8.93 × 10−4 7.52 × 10−4 31.9
N1 3.99 × 10−4 4.92 × 10−4 4.68 × 10−4 3.0
N2 6.71 × 10−4 6.37×10−4 7.12 × 10−4 7.6
N3 1.44 × 10−3 1.63×10−3 1.42 × 10−3 3.8
N4 2.81 × 10−3 2.62 × 10−3 2.98 × 10−3 11.4
N5 4.23 × 10−3 4.41 × 10−3 4.16 × 10−3 8.2
N6 9.19 × 10−3 8.87 × 10−3 9.13 × 10−3 7.6
N7 1.22 × 10−2 1.19 × 10−2 1.21 × 10−2 9.9
O1 1.89 × 10−3 2.02 × 10−3 2.01 × 10−3 1.7
O2 3.38 × 10−3 3.34 × 10−3 3.46 × 10−3 3.2
O3 7.92 × 10−3 9.07 × 10−3 7.83 × 10−3 4.9
O4 4.11 × 10−2 4.05 × 10−2 4.19 × 10−2 24.2
O5 7.44 × 10−2 7.61 × 10−2 7.38 × 10−2 41.4
P1 7.72 × 10−2 7.67 × 10−2 7.66 × 10−2 42.4

Total (Q) 2.39 × 10−1 2.41 × 10−1 2.39 × 10−1

Table 4. Relative Coster-Kronig and shake-off contributions for L3X double-hole to L3 single-hole creation cross-sections,
σ′

L3X/σ′
L3 , for gold (%).

Spectator hole Coster-Kronig Shake-off Total Total
X L1-L3X L2-L3X L3X This work Oohashi [11]
M4 5.34 0.00 0.08 5.42 5.70
M5 7.07 0.00 0.10 7.17 7.60
N1 0.41 0.22 0.06 0.69 0.74
N2 0.17 1.50 0.09 1.76 1.80
N3 0.26 0.43 0.19 0.87 0.93
N4 0.64 1.60 0.39 2.63 2.70
N5 0.80 0.55 0.55 1.90 2.00
N6 0.51 0.07 1.20 1.77 1.80
N7 0.63 0.10 1.59 2.32 2.20
O1 0.08 0.04 0.26 0.39 0.39
O2 0.03 0.26 0.45 0.74 0.82
O3 0.05 0.07 1.03 1.15 1.20
O4 0.07 0.17 5.51 5.74 15.57
O5 0.08 0.06 9.69 9.83
P1 0.01 0.00 10.07 10.08 6.50

For the double-hole level widths we use Γ tot
XY = Γ tot

X +Γ tot
Y ,

where Γ tot
X and Γ tot

Y are single-hole level widths.
The Lβ15 and Lβ2 X-ray satellite line production cross-

sections ratio relative to the Lβ2 line are given by

σR (L3X −XN4,5)
σR (L3 − N5)

=
σ′

L3X

Γ (L3X −XN4,5)
Γ tot

L3X

σ′
L3

Γ (L3 − N5)
Γ tot

L3

. (16)

In equation (16) X = M4, M5 for the visible satellites and
X = N1 to P1 for the hidden satellites. In their work,
Oohashi et al. [11] assumed

Γ (L3X −XN5)
Γ tot

L3X

Γ (L3 − N5)
Γ tot

L3

= 1, (17)
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Table 5. Gold Lβ15 and Lβ2 satellite widths relative to Lβ2 width (columns 2 and 3) and relative L3 to L3X total level widths
(column 4). In columns 5 and 6, Lβ15 and Lβ2 satellite lines production cross-sections relative to Lβ2 diagram line are presented,
equation (16).

X Γ (L3X−XN4)
Γ (L3−N5)

Γ (L3X−XN5)
Γ (L3−N5)

Γ tot(L3)
Γ tot(L3X)

σR(L3X−XN4)

σR(L3−N5)

σR(L3X−XN5)

σR(L3−N5)

M4 0.118 1.024 0.72 0.0046 0.040
M5 0.120 1.021 0.72 0.0061 0.053
N1 0.144 0.983 0.39 0.0004 0.003
N2 0.112 0.998 0.46 0.0009 0.008
N3 0.160 0.952 0.52 0.0007 0.004
N4 0.125 0.701 0.57 0.0019 0.011
N5 0.132 0.830 0.59 0.0015 0.009
N6 0.114 0.759 0.94 0.0019 0.013
N7 0.099 0.890 0.94 0.0022 0.020
O1 0.112 1.008 0.5 0.0002 0.002
O2 0.111 0.873 0.6 0.0005 0.004
O3 0.092 0.998 0.7 0.0007 0.007
O4 0.105 1.109 0.7 0.004 0.044
O5 0.103 0.691 0.7 0.007 0.048
P1 0.111 1.000 0.5 0.006 0.053

Fig. 2. (Color online) Gold L X-ray spectrum calculated in this work, including Lβ2, Lβ3, and Lβ15 diagram lines and satellite
bands, compared with the experimental data (diamonds) [11]. In the inset Lβ2, and Lβ15 satellite lines are shown in a different
intensity scale.

allowing for a further simplification of equations. We did
not use here this simplification. Instead we explicitly cal-
culated all the contributions for the radiative linewidths
both in diagram and satellite lines (Tab. 5).

The theoretical spectrum obtained using the methods
discussed above and assuming, for each line, a linear com-
bination of a Gaussian and a Lorentzian distribution, is
compared with the experimental data [11] in Figure 2. To
allow for a better comparison, the experimental energy
was shifted by −3.2 eV in order to superimpose the Lβ2

line in both the theoretical and measured spectra. The
discrepancies between the energy values, calculated in this
work, of the diagram lines and the experimental ones are

due to the neglect of correlation and other many-body
corrections in our calculation [30,31,35].

3.2.3 Calculation of gold Lβ2 satellite band using Racah’s
algebra

To assess the validity of the calculation of relative satellite
intensities using Racah’s algebra in the case of tungsten,
we used the same procedure for the L3M4,5-M4,5N5 satel-
lite bands of gold, where a more precise calculation allows
for a comparison.

For gold, angular momenta that result from coupling
of electrons in unfilled outer shells, in this case the 6s
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Table 6. Energies and relative X-ray production cross-sections of Lβ2 plus Lβ15 visible satellites for gold. Production cross-
sections are relative to Lβ2 diagram line (a) and Lβ2 diagram line plus hidden satellites (b) production cross-sections, respectively.

Energy (eV) Relative production cross-section (%)
Spectator This Oohashi [11] This work Oohashi [11]

hole work Theory Experiment (a) (b) Theory Experiment
M5 11646.9 11648.4 11641.7 ± 1.1 5.9 4.6 5.5 4.1 ± 0.4
M4 11654.0 11657.5 11658.7 ± 1.1 4.4 3.5 4.2 4.1 ± 0.8
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Fig. 3. Calculated satellite spectrum of gold, including the
L3M4,5-M4,5N5 bands, using Multi-Configuration Dirac-Fock
energy values and intensities obtained with the Racah’s algebra
method - Racah, and from the MCDF calculation - Full.

electron, are j3 = 1/2 and j′3 = 1/2. Now, in what con-
cerns equation (9), for the L3M5-M5N5 transitions we have
J = 1/2, . . . , 9/2 and J ′ = 1/2, . . . , 11/2.

In order to compare the spectra generated using the
two different methods, we normalized the total intensity of
the L3M5-M5N5 satellite band to the same band obtained
with the method described in Section 3.2.2.

The L3M4,5-M4,5N5 satellite bands thus obtained are
presented in Figure 3. The agreement obtained allows us
to conclude for the validity of the tungsten Lβ2 spec-
trum we generated with relative intensities obtained with
Racah’s algebra.

4 Discussion and conclusions

In this work we computed the energy of the L1-L3M5

Coster-Kronig transition in tungsten, using a MCDF rel-
ativistic approach. We showed that this transition is en-
ergetically allowed, thus originating Lβ2 satellite lines.
These lines had been observed 20 years ago [8] and were
again observed recently [10].

The theoretical Lβ2 satellite band of tungsten was
then calculated, using MCDF relativistic transition en-
ergies and a statistical model for the shape of the band.

Due to the large number of transitions involved, we
were only able to estimate the position and the shape
of the the Lβ2 satellite band, using a method that em-
ploys Racah’s algebra to find relative line intensities in
this band. Although the experimental values suffer from
very poor statistics, our results reproduce well the main
features of the measured spectrum.

In the case of gold, we used the MCDF code to com-
pute both the transition energies and the transition prob-
abilities of the Lβ2, Lβ3, Lβ15 diagram lines as well as the
Lβ2 and Lβ15 satellite lines, corresponding to spectator
holes in the M4 and M5 subshells. These satellite lines are
visible satellites. We also computed the energies and tran-
sition probabilities for the hidden Lβ2 and Lβ15 satellites.
These are satellite lines, corresponding to spectator holes
in the Ni (i = 1, 7), Oi (i = 1, 5), and P1 subshells, whose
energies are such that they are superimposed on the Lβ2

diagram line.
The values found in this work for the ratio of L3M4,5-

M4,5N4,5 to L3-N5 X-ray production cross-sections are
presented in Table 6. For comparison with the experiment,
the ratio of L3M4,5-M4,5N4,5 to L3-N5 plus hidden satel-
lites production cross-sections were also computed. These
ratios are compared with Oohashi et al. [11] theoretical
and experimental values on the same table. We note that
in the latter calculation, L3M4,5-M4,5N4 satellite line pro-
duction cross-sections were not taken in account. Also,
transition yields for satellite and diagram lines are taken
by this authors as equal.

We estimate that the uncertainty in our calculation
of the relative X-ray production cross-sections is of the
order of 20%, due mainly to the uncertainty in the L1-
and L3-subshells ionization cross-sections which are 20%
and 10%, respectively.

The theoretical spectrum for gold obtained in this work
agrees very well with experiment. Taking in account the
uncertainties, the satellite bands relative intensities found
in this work are consistent with the measured values of
Oohashi et al. [11].
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